
REPORT DOCUMENTATION PAGE I
age i ro e ;n :ýia i ýýiin& %w

1ýo"olorx ""li' DMOAD-A262 96O~ .rwiSwv O.dal. , nla'ma,,or' opo'dlý.dn R*PL't b - el,.ý4~'.~ A- ;', A

2 REPORT 3 REPORT "YPE AND DATES

Final: 30 April 1992

4- TITLE AND 5 FUNDiNG

Validation Summary Report: TLD Systems, Ltd, TLD Sun-4/MIL-STD-1750A
Ada Compiler Systems, Verssion 2.9.0, Sun-4/75 under SunOS, Version
4.1.1 (Host) to Honeywell Program Devleopment Unit(Target)

6.

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND 8 PERFORMING

Ada Validation Facility, Language Control Facility ASD/SCEL ORGANIZATION

Bldg. 676, Rm 135 AVF-VSR-525-0392
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSOR ING/MON'TOR ING AGENCY NAME(S) AND 10 SPONSORiNGVONýTORiNG

Ada Joint Program Office AGENCY

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY V.

12a. DISTRIBUTION/AVAILABILITY 12b DISTRIBUTION

Approved for public release; distribution unlimited.

13 (Maximrn. 200

TLD Systems, Ltd., TLD Sun-4/MIL-STD-1750A Ada Compiler System. Version 2.9.0, Sun-4;75, under SunOS,
Version 4.1.1 (Host) to Honeywell Program Development Unit (PDU) with Honeywell Generic VHSIC
Spaceborne Computer (GVSC) MIL-STD-1750A under TLDrtx Real Time Executive, Version 1.0.0 (Target),
ACVC 1.11, 920319W1.11239

93-06533
9~3 30 07 ILK

14. SUBJECT 15 NUMBE- OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, 16 PRICE

17 SECURITY 18. SECURITY 19 SECURITY 20 LIMITATION OF
CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN Standard Form 298. (Rev 2 89)
Prescribed by ANSI StI



Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11, Testing was completed on 19 March 1992.

Compiler Name and Version: TLD Sun-4/MIL-STD-1750A Ada Compiler
System, Version 2.9.0

Host Computer System: Sun-4/75,
under SunOS, Version 4.1.1

Target Computer System: Honeywell Program Development Unit (PDU)
with Honeywell Generic VHSIC Spaceborne
Computer (GVSC) MIL-STD-1750A
under TLDrtx Real Time Executive, Version 1.0.0

Customer Agreement Number: 91-11-14-TLD

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920319W1.11239 is awarded to TLD Systems, Ltd. This certificate expires on
1 June 1993.

This report has been reviewed and is approved.
D=I QtTALI 17 aspr C:

Acu~- For
Ma Validation Facility NTIS Pb
Steven P. Wilson cr•^&c A
Technical Director DT!C A3
ASD/SCEL o t
Wright-Patterson AFB OH 45433-6503 J _t ___-__ ___ _

By

Avaddb~iity Ccdes

a Va ia ainO fganization Aecdi
Directbr, != ter and Software Engineering Division Dist Aaspaci l or
Institute for Defense Analyses.
Alexandria VA 22311

J t Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301



AVF Control Number: AVF-VSR-525-0392
30 April 1992
91-11-14-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920319WI.11239
TLD Systems, Ltd.

TLD Sun-4!/MIL-STD-1750A Ada Compiler System, Version 2.9.0
Sun-4/75 under SunOS, Version 4.1.1 ->

Honeywell Program Development Unit (PDU) with
Honeywell Generic VHSIC Spaceborne Computer (GVSC) MIL-STD-1750A

under TLDrtx Real Time Executive, Version 1.0.0

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503



8 2135423433 TLtD Sstse.is Ltd. ry~'

DECLARATION OF CONFORM"CE

Customer: TLD Systems, Ltd.

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB. OH 45433-6503

ACVC Version: 1.1

Ada Implementation:

Compiler Nane and Version: TLD Sun-4/MIL-STD-1750A Ada Compiler System.
Version 2.9.0

Host Computer System: Sun-4/75, SunOS, Version 4.1.1

Target Computer System: Honeywell Program Development Unit (PDU) wvtn
Honeywell Generic VHSIC Spaceborne Computer
MGSC) KIL-STD-1750A

TLDrtx Real Time Rxecutive. Version 1.0.0

Customer's Declaration

1, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/NML-STD-181SA in the implementation listed in this
declaration executing in the default mod*. The certificates shall be
awarded in TLD-Systems, Ltd.'s corporate name.

/

__ ,_____ -_-_-__ ---_._Date: J9 Fgebruary 1992
TLD Systems, Ltd.
Terry L. Dunbar, President

Sun-4/1750A/Honeywell GVSC Page



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT ......... .. 1-1
1.2 REFERENCES ............... .................... .. 1-2
1.3 ACVC TEST CLASSES .......... ................ .. 1-2
1.4 DEFINITION OF TERMS .......... ............... .. 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS ............ ................. .. 2-1
2.2 INAPPLICABLE TESTS ........... ................ .. 2-1
2.3 TEST MODIFICATIONS ........... ................ .. 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT ....... ............... .. 3-1
3.2 SUMMARY OF TEST RESULTS ...... ............. .. 3-1
3.3 TEST EXECUTION ............. .................. .. 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD



CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83) using the
urrent Ada Compiler Validation Capability (ACVC). This Validation Summary

Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1



INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRTl3,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set -of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2



INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3



INTRODUCTION

ronformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Uslially,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to;be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4



CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BD1B05A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A cD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS I

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1



IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations
rzquiring more digits than SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORTINTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55BO9D B86031V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORTINTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, tnat range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is lets than 47.

C45536A, C46013B, C46031B. C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

2-2



IMPLEMENTATION DEPENDENCIES

D64005F..G (2 tests) use 10 levels of recursive procedure calls
nesting; this level of nesting for procedure calls exceeds the
capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not ipport such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implet.-entation does
not support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files (see Section 2.3 regarding CE3413B):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A. EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)

2-3



IMPLEMENTATION DEPENDENCIES

CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation does
not support external files and-so raises USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 1345 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B44004D B59001E B73004B BAI001A

C34003A, and C45521A..E (5 tests) were graded passed by Evaluation Modifi-
cation as directed by the AVO. These tests check that operations for
floating-point types are correctly implemented; but the target computer's
divisio. operation introduces an error in the least-significant bit, and
some of the tests' checks for division are failed. The AVO ruled that this
behavior is allowable as per AI-00325--that implementing division in
software to compensate for the target computer is not practical. These
tests were graded passed given that the only Report.Failed output was:

for C34003A:

* C34003A INCORRECT/.

for C45521A..E, where '<x>' is replaced by the 'A'..'E', respectively
(here, Report.Failed output must be identified by the Report.Comnent
output it follows):

- C45521<x> (G) CHECK /; A, B, A/B ALL MODEL NUMBERS.
* C45521<x> THE RESULT IS INCORRECT.
- C45521<x> (J) CHECK /; A, B, A/B ALL MODEL NUMBERS; DIFFERE7

SUBTYPES.
* C45521<x> THE RESULT IS INCORRECT.

C34009D and C34009J were graded passed by Evaluation Modification as
directed by the AVO. These tests check that 'SIZE for a composite type is
greater than or equal to the sum of its components' 'SIZE values; but this
issue is addressed by AI-00825, which has not been considered; there is not
an obvious interpretation. This implementation represents array components
whose length depends on a discriminant with a default value by implicit
pointers into the heap space; thus, the 'SIZE of such a record type might
be less than the sum of its components 'SIZEs, since the size of the he.p
space that is used by the varying-length array components is not counted as
part of the 'SIZE of the record type. These tests were graded passed given

2-4



IMPLEMETATION DEP-NDWENCI ES

that the Report.Result output was "FAILED" and the only Report.Failed
output was "INCORRECT 'BASE'STZE", from line 195 in C34009D and line 193 in
C34009J.

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. These tests were modified by inserting "PRAGCIA ELABORATE
(REPORT);" before the package declarations at lines 13 and 11,
respectively. Without the pragma, the packages may be elaborated prior to
package Report's body, and thus the packages' calls to function
REPORT.IDENT INT at lines 14 and 13, respectively, will raise
PROGRAMERROR.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures,
Length Check or EnumCheck (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses required support for
Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.11, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, arnd 58..63 in ENUMCHEK were commented out.

CD1009A CD1009I CD1009M CD1009V CD1009W CDIC03A
CDIC04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C

*CD2A81A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

*CD2A81A, CD2A81B, CD2A81E, CD2A83A, CD2A83B, CD2A83C, and CD2A83E were
graded passed by Test Modification as directed by the AVO. These tests
check that operations of an access type are not affected if a 'SIZE clause
is given for the type; but the standard customization of the ACVC allows
only a single size for access types. This implementation uses a larger
size for access types whose designated object is of type STRING. The tests
were modified by incrementing the specified size $ACCSIZE with '+ 32'.

CE2103A, CE2103B, and CE3107P. were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USEERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

CE3413B was graded inapplicable by Evaluation Modification as directed by
the AVO. This test includes the expression "COUNT'LAST > 150000", which
raises CONSTRAINT ERROR on the implicit conversion of the integer literal
to type COUNT sTnce COUNT'LAST = 32,767; there is no handler for this
exception, so test execution is terminated. The AVO ruled that this

2-5



IMPLEMENTATION DEPENDENCIES

behavior was acceptable; the AVO ruled that the test be graded inapplicable
because it checks certain file operations and this implementation does nct
support external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied
by the customer and guidance from the AVO. This bundling was done in order
to reduce the processing time-compiling, linking, and downloading to the
target. For each test that was bundled, its context clauses for packages
Report and (if present) SYSTEM were commented out, and the modified test
was inserted into the declarative part of a block statement in the bundle.
The general structure of each bundle was:

WITH REPORT, TEXT 10, SYSTEM;

PROCEDURE <BUNDLE NAME> IS

-- repeated for each test

DECLARE
<TEST FILE> [a modified test is inserted here, ...

BEGIN
<TEST NAME>; [... and invoked here]

EXCEPTION -- test is not expected to reach this exception handler
WHEN OTHERS => REPORT.FAILED("unhandled exception ");

REPORT.RESULT;
END;
TEXTIO.NEWLINE;

[ ... repeated for each test in the bundle]

TEXT IO.PUT LINE ("GROUP TEST <BUNDLENAME> COMPLETED");
END <BUNDLENAME> ;

The 1293 tests that were processed in buindles are listed below; each bundle
is delimited by '<' and '>'.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A29002I A29002J A29:7003A A2AO31A> <A,312203 ai22nC
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A38106E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
A54BO1A A54B02A A55B12A A55B13A A55B14A A62006D A71002A
A71004A A72001A A730011 A73001J A74105B A74106A A74106B
A74106C A74205E A74205F> <A83009A A83009B A83041B A83041C
A83041D A83A02A A83A02B A83A06A A83A08A AB3CO1C A83COlD
A83C0lE A83CO1F A83COlG A83COlH A83COlI A83C01J A85007D
A85013B A87B59A> <AB7006A AC1015B AC3106A AC3206A AC3207A>

<ADIAO0A ADIA01B ADlD01E AD7001B AD7005A AD7101A AD7101C
AD7102A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006A C24002A C24002B C24002C C24003A C24003B
C24003C C24106A C24113A C24113B C24113C C24113D C24113E>

2-6



IMPLEMENTATION DEPENDENCIES

<C24201A C24202A C24202B C24202C C24203A C24203B C24207A
C24211A C25001A C25001B C25003A C25004A C26002B C26006A>

<C26008A C27001A C2A001A C2A00lB C2A00lC C2AO02A C2AO06A
C2AO08A C2AO09A C2A021B> <C32107A C32107C C32108A C32108B
C32111A C32111B> <C32112A C32112B C32113A> <C32114A C32115A
C32115B> <C32117A C34001A C34001C C34001D C34001F C34002A
C34002C C34003A C34003C> <C34004A C34004C C34005A C34005C>

<C34005D C34005F C34005G C34005I> <C340053 C34005L C34005M
C340050> <C34005P C34005R C34005S C34005U C34006A C34006F
C34006G C34006J> <C34006L C34007A C34007D C34007F C34007G>

<C34007I C34007J C34007M C34007P> <C34007R C34007S> <C34009A
C34009F C34009G C34009L C34011B C34012A C34014A C34014C>

<C34014E C34014G C34014H C34014J C34014L C34014N C34014P
C34014R C34014T> <C34014U C34014W C34014Y C34015B C34016B
C34018A C35003A C35003B C35003D C35003F C35102A C35106A
C35404A C35404C> <C35503A C35503B C35503C C35503D C35503E
C35503F C35503G C35503H C35503K> <C35503L C355030 C35503P
C35504A C35504B C35505A C35505B C35505C> <C35505D C35505E
C35505F C35507A C35507B> <C35507C C35507E C35507G C35507H
C35507I C35507J> <C35507K C35507L> <C35706A C35706B C35706C
C35706D C35706E> <C35707A C35707B C35707C C35707D C35707E
C35708A C35708B C35708C C35708D C35708E> <C35711A C35711B
C35712A C35712B C35712C C35713A C35713C> <C35801D C35802A
C35802B C35802C C35802D C35802E> <C35902A C35902B C35902D
C35904A C35904B C35A02A C35A03A C35A03B C35A03C C35A03D>

<C35A03N C35A030 C35A03P> <C35AO3Q C35A04A C35A04B C35A04C>
<C35A04D C35A04N> <C35A040 C35A04P> <C35A04Q C35A05A C35AO5D

C35AO5N> <C35A05Q C35AO6A C35A06B> <C35A06D C35A06N C35A060>
<C35A06P C35A06Q C35A06R C35A06S C35AO7A C35AO7B C35AO7C>
<C35A07D C35A07N C35A070 C35AO7P C35AO7Q C35AO8B C36003A>
<C36174A C36180A C36202.A C36202B C36202C C36203A C36204A

C36204B C36204C> <C36205A C36205B C36205C C36205D C36205E
C36205F C36205G C36205H> <C362051 C36205J C36205K C36301A
C36301B C36302A C36303A C36304A C36305A> <C37002A C37003A
C37003B C37005A C37006A C37007A C37008A C37008B> <C37008C
C37009A C37010A C37010B C37012A C37102B C37103A C37105A
C37107A C37108B C37206A C37207A C37208A C37208B C37209A
C37209B C37210A> <C37211A C37211B C37211C C37211D C37211E
C37213A C37213B C37213C C37213D> <C37213E C37213F C37213G
C37213H> <C37213J C37213K C37213L C37214A> <C37215A C37215B>

<C37215C C37215D C37215E C37215F C37215G C37215H C37216A
C37217A C37217B C37217C> <C7337304.-% C373A C37307A
C37309A C37310A C37312A. C37402A C37403A> <C37404A C37404B
C37405A C37409A C37411A C38002A C38002B C38004A C38004B
C38005A C38005B C38005C C38006A C38102A C38102B C38102C
C38102D C38102E C38104A C38107A C38107B> <C38108A C38201A
C38202A C39006A C39006B C39006D C39006E C39006G C39007A
C39007B C39008A C39008B C39008C> <C41101D C41103A C41103B
C41104A C41105A C41106A C41107A C41108A C41201D C41203A
C41203B> <C41204A C41205A C41206A C41207A C41301A C41303A
C41303B C41303C C41303E C41303F C41303G C41303I C41303J
C41303K C41303M C41303N C413030 C41303Q C41303R C41303S
C41303U C41303V C41303w C41304A> <C41304B C41306A C41306B
C41306C C41307A C41307C C41307D C41308A C41308C C41308D

2-7



IMPLEMENTATION DEPENDENCIES

C41309A> <C41320A C41321A C41322A C41323A C41324A C41325A
C41326A C41327A C41328A> <C41401A C4140ZA C41403A C41404A
C42005A C42006A C42007A C42007B> <C42007C C42007D C42007E
C42007F C42007G C42007H C420071> <C42007J C42007K C43003A
C43004B C43004C C43103A C43103B C43104A> <C43105A C43105B
C43106A C43107A C43108A C43204A C43204C C43204E C43204F>

<C43204G C43204H C43204I C43205A C43205B C43205C C43205D
C43205E C43205F C43205G C43205H C432051 C43205J C43205K
C43206A C43207A C43207B C43207C> <C43207D C43208A C43208B
C43209A C43210A C43211A C43212A C43212C C43213A> <C43214A
C43214B C43214C C43214D C43214E C43214F C43215A C43215B
C43222A> <C43224A C44003A C44003D C44003E C44003F C44003G
C45101A C45101B C45101C C45101E C45101G C45101H C451011
C45101K C45104A C45111A C45111B C45111C> <C45111D C45111E
C45112A C45112B C45113A> <C45114B C45122A C45122B C45122C
C45122D C45123A C45123B C45123C> <C45201A C45201B C45202A
C45202B C45210A C45211A C45220A C45220B C45220C C45220D
C45220E C45220F C45231A C45231C> <C45232A C45232B C45241A
C45241B C45241C C45241D C45241E> <C45242A C45242B C45251A
C45252A C45252B C45253A C45262A> <C45272A C45273A C45274A
C45274B C45274C C45281A C45282A C45282B C45291A C45303A
C45304A C45304C> <C45321A C45321B C45321C C45321D C45321E>

<C45323A C45331A C45331D C45332A C45342A C45343A C45344A
C45345A C45345B C45345C C45345D> <C45347A C45347B C45347C
C45347D C45411A C45411C C45411D C45412A C45412C> <C45413A
C45421A C45421B C45421C C45421D C45421E> <C45423A C45431A
C45502A C45502C C45503A C45503C> <C45504A C45504C C45504D
C45504F> <C45505A C45521A C45521B C45521C C45521D C45521E>

<C45523A C45524A C45524B C45524C C45524D C45524E> <C45532A
C45532B C45532C C45532D C45532E C45532F C45532G C45532H
C455321 C45532J C45532K C45532L> <C45534A C45611A C45611C
C45613A C45613C C45614A C45614C C45621A C45621B C45621C
C45621D C45621E> <C45622A C45624A C45624B C45631A C45631C
C45632A C45632C C45641A C45641B C45641C C45641D C45641E>

<C45652A C45662A C45662B C45672A C46011A C46012A C46012B
C46012C> <C46012D C46012E> <C46013A C46014A C46021A C46023A
C46024A C46031A C46032A C46033A> <C46041A C46042A C46043A
C46043B> <C46044A C46044B C46051A C46051B C46051C> <C46052A
C46053A C46054A C47002A C47002B C47002C C47002D C47003A
C47004A C47005A C47006A C47007A> <C47008A C47009A C47009B
C48004A C48004B C48004C C48004D C48004E C48004F C48005A
C48005B C48005C C48006A C48006B> <C48007A C48007B C48007C
C48008A C48008B C48008C - C48008D C48009A C48009B C48009C
C48009D C48009E C48009F C48009G> <C48009H C480091 C48009J
C48010A C48011A C48012A C49020A C49021A C49022A C49022B
C49022C C49023A C49024A C49025A C49026A> <C4AO05A C4AO05B
C4AO06A C4AO07A C4AO10A C4AO10B C4AM1OD C4AO11A C4AO12A
C4AO12B C4A013A C4AO13B C4AO14A> <C51002A C51004A C52001A
C52001B C52001C C52005A C52005B C52005C C52005D C52005E
C52005F> <C52007A C52008A C52008B C52009A C52009B C52010A
C52011A C52011B C52012A C52012B C52013A> <C52103B C52103C
C52103F C52103G C52103H C52103K C52103L> <C52103M C52i03P
C52103Q C52103R C52103S C52103X C52104A C52104B C52104C
C52104F> <C52104G C52104H C52104K C52104L C52104M C52104P

2-8



IMPLEMENTATION DEPENDENCIES

C52104Q C52104R C52104X C52104Y> <C53004B C53005A C53005B
C53006A C53006B C53007A C53008A C54A03A C54AO4A C54AO6A
C54A07A C54AIIA C54A13A C54AI3B C54A13C> <C54A13D C54AQ2A
C54A23A C54A24A C54A24B C54A26A C54A27A C54A41A C54A42A
C54A42B C54A42C C54A42D C54A42E C54A42F C54A42G C55B03A
C55BO4A C55BO5A C55B06A C55BO6B C55BO7A> <C55BO8A C55BO9A
C55B1OA C55BIIA C55B11B C55B1SA C55B16A C55COIA C55CO2A
C55CO2B C55CO3A C55C03B C55D01A C56002A C57002A C57003A
C57004A C57004B C57004C C57005A> <C58004A C58004B C58004C
C58004D C58004F C58004G C58005A C58005B C58005H C58006A
C58006B C59001B C59002A C59002B C59002C> <C61008A C61009A
C61010A C62002A C62003A C62003B C62004A C62006A C62009A
C63004A C64002B> <C64004G C64005A C64005B C64005C C64103A
C64103B C64103C C64103D C64103E C64103F> <C64104A C64104B
C64104C C64104D C64104E C64104F C64104G C64104H C64104I
C64104J C64104K C64104L C64104M C64104N C641040 C64105A
C64105B C64105C C64105D C64105E C64105F> <C64106A C64106B
C64106C C64106D C64107A C64108A C64109A C64109B C64109C
C64109D C64109E> <C642.09F C64109G C64109H C641091 C64109J
C64109K C64109L> <C64.O1B C64201C C64202A C65003A> <C65003B
C65004A C66002A C66C102C C66002D C66002E C66002F C66002G
C67002A C67002B C67002C C67002D C67002E> <C67003A C67003B
C67003C C67003D C67003E C67005A C67005B C67005C C67005D>

<C72001B C72002A C73002A C73007A C74004A C74203A C74206A
C74207B C74208A C74208B C74209A C74210A C74211A C74211B
C74302A C74302B C74305A C74305B C74306A C74307A> <C74401D
C74401E C74401K C74401Q C74402A C74402B C74406A C74407B
C74409B> <C83007A C83012D C83022A C83023A C83024A C83025A>

<C83027A C83027C C83028A C83029A C83030A> <C83031A C83031C
C83031E C83032A C83033A C83051A C83B02A C83B02B CM3E0=A
C83E02B C83E03A C83E04A C83FO1A C83F03A C84002A C84005A
C84008A C84009A C85004B C85005A C85005B C85005C C85005D>

<C85005E C85005F C85005G C85006A> <C85006F C85006G> <C87A05A
C87A05B C87B02A C87B02B C87B03A C87B04A C87B04B C87B04C
C87B05A C87B06A C87B07A C87B07B> <C87B07C C87B07D C87B07E
C87B08A C87B09A C87B09B C87B09C C87B10A C87BIIA C87BIlB
C87B13A C87BI4A C87B14B C87B14C C87B14D> <C87B15A C87B16A
C87B17A C87B18A C87BI8B C87BI9A C87B23A C87B24A> <C87B33A
C87B34A C87B34B C87B34C C87B35A C87B35B C87B35C C87B37A
C87B37B C87B37C C87B37D C87B37E C87B37F C87B38A C87B39A>

<C87B40A C87B4iA C87B42A C87B43A C87B44A C87B45A C87B45C
C87B47A C87B48A C87B48B C87B50A C87B54A C87B57A C87B62A
C87B62B> <CB1001A CB1002A. CB1003A CB1004A CB1005A CB1010A
CB1010B CB1010C CBI010D> <CB2004A CB2005A CB2006A CB2007A
CB3003A CB3003B> <CB3004A CB4001A CB4002A CB4003A CB4004A
CB4005A CB4006A CB4007A CB4008A CB4009A CB4013A CB5002A
CB7003A CB7005A> <CC1004A CC1005C CCI010A> <CCI010B CCI018A
CC1104C CC1107B CC1111A CC1204A CC1207B CC1220A CC1221A
CC1221B CC1221C CCiL221D> <CC1222A CC1224A CC1225A> <CC1304A
CC1304B CC1305B CC1307A CC1307B CC1308A CC1310A> <CC1311A
CC1311B CC2002A CC3004A CC3007A CC3011A CC3011D CC3012A
CC3015A CC3106B> <CC3120A CC3120B CC3121A CC3123A CC3123B
CC3125A CC3125B CC3125C CC3125D> <CC3126A CC3127A CC3128A
CC3203A CC3207B CC3208A CC3208B> <CC3208C CC3220A CC3221A

2-9



IMPLEMENTATION DEPENDENCIES

CC3222A CC3223A CC322-A CC3225A> <CC3230A CC3231.A CC3232A
CC3233A CC3234A CC3235A CC3236A CC3240A CC3305A CC3305B
CC3305C CC3305D CC3406A CC3406B CC3406C CC3406D CC3407A
CC3407B CC3407C CC3407D CC3407E CC3407F> <CC3408A CC3408B
CC3408C CC3408D CC3504A CC3504B CC3504C CC3504D CC3504E
CC3504F> <CC3504G CC3504H CC3504I CC3504J CC3504K> <CC3601A
CC3601C> <CC3603A CC3606A CC3606B CC3607B>

* This test listed in two explanations

2-10



CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.
For technical and sales information about this Ada implementation, contact:

Terry L. Dunbar
TLD Systems, Ltd.
3625 Del Amo Blvd.
Suite 100
Torrance, CA 90503

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

3-1



PROCESSING INFORMATION

a) Total Number of Applicable Tests 3459
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 67
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 616 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The tests were
grouped in bundles for more efficient processing.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It Also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Options I Switch Effect

NoPhase Suppress displaying of phase times during
compilation

All tests were executed with the Code Straightening, Global
optimizations, and automatic Inlining options enabled. Where
optimizations are detected by the optimizer that represent
deletion of test code resulting from unreachable paths,
deleteable assignments, or relational tautologies or
contradictions, such optmizations are reflected by informational
or warning diagnostics in the compilation listings.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2



APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in JUG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 120 -- Value of V

$BIG IDI (I..V-l => 'A', V -> 'i')

$BIGID2 (l..V-i -> 'A', V 1> '2')

$BIGID3 (l..V/2-> 'A') & '3' &
(i..V-I-V/2 => 'A')

$BIGID4 (l..V/2 => 'A') & '4' &
(l..V-l-V/2 -> 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (I..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (1..V-I-V/2 -> 'A') & 'I' & '"'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITEPAL"2:" & (l..V-5-> '0') & "11:"

$MAXLENREAL BASED LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

A-1



MACRO PARAMETERS

$MAX STRING LITERAL '"' & (1..V-2 => 'A') & '"'

The folliwing table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 16

SALIGNMENT 4

$COUNT LAST 511

$DEFAULTMEMSIZE 65536

$DEFAULT STOR UNIT 16

$DEFAULTSYSNAME AF1750

$DELTADOC 2.0**((-31)

SENTRY ADDRESS 15

SENTRY ADDRESS1 17

$ENTRY ADDRESS2 19

$FIELDLAST 127

$FILETERMINATOR ASCII.FS

$FIXED NAME NO SUCH FIXED TYPE

$FLOAT NAME NO SUCH FLOAT TYPE

$FORM STRING "f"

$FORMSTRING2 "CANNOTRESTRICT FILE CAPACITY"

$GREATER THAN DURATION
90000.0

$GREATERTHANDURATION BASE LAST
13107L. 0

$GREATER THAN FLOAT BASE LAST
-- 1.71000E+38

$GREATER THAN FLOAT SAFE LARGE
2.13000E+37

A-2



MACRO PARAMETERS

$GREATER THA4N SHORT FLO:AT SAFE LARGE
NOSUCHSHORT FLOAT-TYPE

$HIGHPRIORITY 64

$ILLEGAL_ iTEp1rXFILENAMEl
BADCHAR@.!

$ILLEGAL -ETERNAL FILE NAmE2
THI SFILENMAEWULDBEPERFECTLYLEGALI FI¶EWERENOTSOLONG .SOTHERE

$ INAPPROPRIATELINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDE-PRAGMAl PRAGMA INCLUDE ("'A28006D1.TST't )

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGER LAST PLUS 1 32768

$ INTERFACE LANGUAGE ASSEMBLY

$LESSTHANDURATION -90000.0

$LESS THAN DURATION BASE FIRST
- - -1'31073.0

$LINETERMINATOR ASCII .CR.

$LOW _PRIORITY 1

$MACHINE-CODE-STATEMENT
PFMTI~'(OPCODE->LR,RA'>RO,RX->R2);

$MACHINECODETYPE ACCUMULATOR

$MANTISSADOC 31

$MAXDIGITS 9

$MAX INT 2147483647

$MAXINTPLUS 1 2147483648

St'ININT -2147483648

$NAM4E NOSUCHINTEGER TYPE

A-3



MACRO PARAMETERS

$NAME-LIST none,nsi.6000,vax,afl750,z8O02,
z8001 ,gould,pdpll ,m68000,
pe3200 ,ca,amdahl, i8086,
i80286, i80386, z8o000, ns32000,
ibmsl,m68020,nebula,nanie-x,hp

$NAMESPEC I FlCATIONi NOTSUPPORTED

$NAMESPECIFICATION2 NOTSUPPORTED

$NAMESPECIFICATION3 NOTSUPPORTED

$NEG BASED INT 16#FFFFFFFE#

$NEWMENSIZE 65535

$NEWSTORUNIT 16

$NEW SYS-NAME afl750a

$PAGETERMINATOR ASCII.CR & ASCII .FF

SRECORD-DEFINITION RECORD OPCODE: ROPCODE VALUE;
RA: REGISTER;
EX: REGISTER:wRO;
END RECORD;

$RECORDNAME RFMT

$TASKSIZE 16

$TASKSTORAGESIZE 2000

$TICK 1.0/10000.0

$VARIABLEADDRESS 16#8000#

$VARIABLEADDRESS1 16#8020#

$VARIABLE ADDREsS2 16#8040#

$ YOUR PRAGM4A NOSUCH PRAGMA

A-4



APPENDIX B

COMPILATION SYSTEM OPTIONG

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-1



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 7

Example: With the logical name definition

$ DEFINE ADA-DEFAULTS "/LIST/MAC/NOCHECKS"

the Ada compiler invocation command

$ ADATLD/DEBUG TEST

is expanded to

$ ADATLD/LIST/MAC/NOCHECKS/DEBUG TEST

by the compiler.

3.4 COMPILER OPTION SWITCHES

Compiler option switches provide control over various processing and
output features of the compiler. These features include several
varieties of listing output, the level and kinds of optimizations
desired, the choice of target computer, and the operation of the
compiler in a syntaA checking mode only.

Keywords are used for selecting various compiler options. The
complement keyword, if it exists, is used to disable a compiler option
and is formed by prefixing the switch keyword with "NO".

Switches may be abbreviated to the number of characters required to
uniquely identify the switch. For example, the switch "CROSSREF"
(explained in the list below) may be uniquely identified by the
abbreviation *CR" or any longer abbreviation. In the list of switches,
on the following pages, the abbreviations are in bold, the optional
extra characters are not bolded.

If an option is not specified by the user, a default setting is
assumed. All specified compiler options apply to a single invocation
of the compiler.

The default setting of a switch and its meaning are defined in the
table below. The meaning of the complement form of a switch is
normally the negation of the switch. For some switches, the complement
meaning is not obvious; these complement switch keywords are listed
separately.

In the description of the switches, the target dependent name -target is
used. The value of this symbol is determined by the value of the
TARGET switch.

.. ,•r S' ST6Ms urr



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 8

Compiler generated file specifications generally conform to host
conventions. Thus, any generated filename is the source filename
appended with the default file type The output file name can be
completely or partially specified.

7LD 5VSTEI- L770



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 9

SWITCH NAME MEANING

16BADOR
32BADDR -- default

The 32BADDR option causes address computations to be performed
using 1750A double precision fixed point data words. If 16BADDR is
selected, address computations will be performed using single
precision fixed point data words ignoring the possibility of a
1750A Fixed Point Overflow Interrupt due to computation of an
address greater than 7FFF hex. applicable to 1750A target only.

ASH (-emulation-file-spec)
NOAsM -- default

The ASM switch selects an assembler output file which contains VAX
macro references for assembling and emulation of the target on the
VAX (1750A target only).

If no emulation-file-spec is specified, the file name is formed
from the file name of the input-file-spec with the file type
".MAR". If only the emulation-file name is specified, a file type
of ".MAR" is added to form the full file name. If only the file
type is specified, the file name of the input-file-spec is used
with the specified file type to form the full file name.

The ASH switch overrides an earlier ASSEMBLY or MACRO switch.

CALL MEE
NOCA-LLTREE -- default

This switch is used in conjunction with /ELABORATE and /LIST to
cause all .CTI files (corresponding to the complete set of object
files being linked for this program) to be read in and a closure of
all calls in the program to be computed. The results of this
analysis is formatted into a subprogram call tree report.

Note: The call tree will be incomplete if any required compilation
unit's .CTI files are missing.

7J~ d5TU~45LTD



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 10

CHECKS - - default
CHECKS(-(check identifier(,...)))
NOCHEcKS (-(check identifier ( .... )))

When the CHECKS switch is used, one or more check identifiers are
specified and the specified run time checks are enabled. The
status of run time checks associated with unmentioned
check-identifiers is unchanged.

Without any check-identifiers, the NOCHECKS switch omits all run
time checks. If one or more check, identifiers are specified, the
specified run time checks are omitted. The status of run time
checks associated with unmentioned check-identifiers is unchanged.

Checks can be eliminated selectively or completely by source
statement pragma Suppress. Pragma Suppress overrides the checks
switch.

Check identifiers are listed below and are described in the LRM,
Section 11.7.

ACCESS CHECK DISCRIMINANT CHECK DIVISION CHECK
ELABORATION CHECK INDEX CHECK LENGTH CHECK
OVERFLoJ CHECK RANGECHECK STORAGE CHECK

CONFIG-value
NOCONFIG-value

The CONFIG switch provides a conditional compilation
(configuration) capability by determining whether or not source
text, introduced or bracketed by special comment constructs, is
compiled. For a single line:

-- /value source-text

where source-text is compiled only if config - value is
specified.

For multiple lines:

-- /value line-I

-- Ivalue line-2

-- /value line-n



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 11

where the construct

-- /value line-I

line-2

- -/value line-n

is equivalent.

NOTE: The braces (( and }) must appear in the source code; in
this instance, they are not meta-characters. All of the text
between -- / Ivalue and --- / ) value is compiled or skipped,
depending upon whether or not the config-value is present.

CRossREF
NOCRossREF -- default

This switch generates a cross reference listing that contains names
referenced in the source code. The cross reference listing is
included in the listing file; therefore, the LIST switch must be
selected or CROSSREF has no effect.

CSEG -- default
NOCSEC

This switch indicates that constants are to be allocated in a
control section of their own (1750A target only).

CTI {-CTI-file-spec}
NOCTi -- default

This switch generates a CASE tools interface file. The default
filename is derived from the object filename, with a .CTI
extension. This switch is required to support the Stack Analysis
and/or Call Tree switches.

TLD ,WSTEA4E1 LTD



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 12

DEBUG -- default
NODEBUG

This switch selects the production of symbolic debug tables in the

relocatable object file.

Alternate abbreviation: DBG, NODBG

DELAssIGN -- default
NODELAsSIGN

This switch optimizes code by deleting redundant assignments.

NOTE: Use of this switch can cause erroneous source programs to
execute with unexpected results if references to access objects
are made without regard to the interference semantics of Ada.

DIAGNOSTICS -- default
NODIAGNOSTICS

The DIAGNOSTICS switch produces a file compatible with Digital's ?
Language Sensitive Editor and the XinoTech Composer. See Digital's ?
documentation for the Language Sensitive Editor for a detailed ?
explanation of this switch. ?

ELABORATOR

This switch selects generation of a setup program that elaborates
all compilation units on which the named subprogram depends and
then calls the named program. This program will be the main
program at link time.

EXCEPTION INFO
NOEXCEPTIONINFO - default

This switch generates a string in the relocatable object code that
is the full pathname of the file being compiled. It generates
extra instructions ;o identify the location at which an unhandled
exception occurred. The NOEXCEPTION INFO switch suppresses the
generation of the string and extra instructions. The source
statement pragma Suppress (ALLCHECKS) or pragma Suppress
(EXCEPTION-INFORMATION) suppresses only the extra instructions.

.• ,rLD ZZTe&4Z LT=
W,,OW



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 13

FULLCALLTREE -- default

When the FULL CALL TREE switch is used, the compiler listing ?
includes representations of every call. ?

INDENT-n
INDENT-3 -- default

This switch produces a formatted (indented) source listing. This
switch assigns a value to the number of columns used in
indentation; the value n can range from 0 to 15.

INDIRECT
NOINDIRECT -- default

If this switch is used, all subprograms declared in the compilation
are called with indirect calls. This switch only applies to the
1750A target.

INFO -- default
NOINFo

This switch produces all diagnostic messages. It suppresses the
production of information-level diagnostic messages.

INLINE -- default
NOINLINE

This default switch automatically inlines any procedure that is ?
called only once. It may be disabled by adding the noinline option ?
to the command line. Inlining Is only implemented for calls that ?
are made within the same compilation unit as the body of the ?
procedure to be expanded. ?

INTsL
NOINTsL -- default

This switch intersperses lines of source code with the assembly ?
code generated in the macro listing. This switch is valid only if ?
the LIST, SOURCE, and MACRO switches are selected, and one of the ?
MACRO, ASM, or ASSSEMBLY switches is selected. The MACRO switch ?
overrides an earlier ASSEMBLY or ASH switch. ?

LIBRARY-Ada-program- library- file -spec
LIBRARY-target.LIB -- default

This switch identifies the file to be used for Ada Program
Library. The default value of target in the Ada Program Library
file spec is derived from the TARGET switch.

B7L0lfm 3'37A'S T



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 14

LIST -listing- file- spec)
NOLIST -- default in interactive mode
LIST -- default for background processes

The LIST switch generates a listing file. The default file type is
.LIS. The listing-file-spec can be optionally specified.

LOG
NOLOG -- default

This switch requests the compiler to write a compiler log,
including command line options and the file spec of the Ada source
file being compiled, to SYS$OUTPUT.

MACRO
NOMACRo -- default

The MACRO switch produces an assembly like object code listing
appended to the source listing file. The LIST switch must be
enabled or this switch has no effect.

MAIN ELAB
NOMA"IN ELAB -- default

The MAIN ELAB switch is used to inform the compiler that the
compilation unit being compiled is to be treated as a user-defined
elaboration, or setup, program.

Note: The XTRA switch is required when MAINELAB is to be used.

MAKELIB (-parent-APL- spec)
NOMAKELIB -- default

The MAKELIB switch creates a new Ada Program Library (APL) file.
MAKELIB should be used with caution because it creates a new APL
file in the default directory even if another APL file of the same
name existed.

The new APL file is created in the default directory with the name
cargec.LIB unless the LIBRARY switch is used.

If MAKELIB is used without a parent, a new library is created with
the default RTS specification. This specification is derived from
the name TLDLIB _arget. See the target dependent compiler
sections for further explanations of this name.

TLD S"SMTAS LA7



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 15

MAXERRORS-n
MAXERRoRs-50o -- default

This switch assigns a value limit to the number of errors forcing
job termination. Once this value is exceeded, the compilation is
terminated. Information-level diagnostic messages are not included
in the count of errors forcing termination. The specified value's
range is from 0 to 500.

MODEL-model -- 1750A target
MODEL-STANDARD -- default
MODEL-VAMP
MODEL-IBM GVSC -- IBM GVSC target
MODEL-HWEEL GVSC -- HoneywellCVSC target
MODEL-HWELL-GVSCFPP -- Honeywell G-VSC target (with

floating point processor)
MODEL-RWELL ECA -- Rockwell Embedded Compiler architecture

-RI175OAB -- Rockwell International 1750A/B architecture
MODEL-MA31750 -- Marconi 31750 architecture
MODEL-PACE 1750AE -- PACE 1750AE architecture
MODEL-MS 1750B II - MIL-STD-1750B, Type II

-MS 1750B III -- KIL-STD-1750B, Type III
MODEL-MD-C281 - Marconi MDC281

By default, the compiler produces code for the generic or standard
target. The model switch allows the user to specify a nonstandard
model for the target.

For the 1750A target, MDC281 switch selects the MDC281 (HAS 281)
implementation of NIL-STD-1750A.

OBJECT-obj ecc-file-spec)
OBJECT -- default
NOOBJECT

The OBJECT switch produces a relocatable object file. The default
file type is ".OLT".

OPT -- default
NOOPT

The OPT switch enables global optimization of the compiled code.

TL,-: SV'5?E.AS LTD



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 16

PAGE-n
PAGE-60 -- default

The PAGE switch assigns a value to the number of lines per page for
listing. The value can range from 10 to 99.

PARM
NOPARm.-- default

The PARM switch causes all option switches governing the
compilation, including the defaulted option switches, to be
included in the listing file. The LIST option must also be
selected or PARM will have no effect. User specified switches are
preceded in the listing file by a leading asterisk (*).

PHASE -- default
NOPHASE

The NOPHASE switch suppresses the display of phase names during
compilation.

REF_IDCASE-option

The Ref Id Case switch is used to determine how variable names
appear in the compiler listing. The options for this switch are:

All Lower -- All variable names are in lower case.
AllUnderlined -- All variable names are underlined.
AllUpper -- All variable names are in upper case.
As Is -- All variable names appear as is.
InitialCaps -- All variable names have initial caps.
Insert-Underscore -- All variable names have underscores inserted.

REF_KEY•_CASE-opcion

The Ref KeyCase switch is used to determine how Ada key words
appear in the compiler listing. The options for this switch are:

AllLower -- All Ada key words are in lower case.
All-Underlined -- All Ada key words are underlined.
All Upper -- All Ada key words are in upper case.
As Is -- All Ada key words appear as is.
InitialCaps -- All Ada key words have initial caps.
InsertUnderscore All Ada key words have underscores inserted.

TLO 5VWSr6 .5 L=T



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 17

REFORMATI -reformat-file-spec)
NOREFORmAT -- default

This switch causes TLDada to reformat the source listing in the
listing file and, if a reformat-file-spec is present, to generate a
reformatted source file. The default type of the new source file
is ".RFl".

SOURCE -- default
NOSOURcE

This switch causes the input source program to be included in the
listing file. Unless they are suppressed, diagnostic messages are
always included in the listing file.

STACK ANALYSIS
NOSTCKANALYSIS -- default

This switch is used with the ELABORATOR switch to cause all CTI
files (corresponding to the complete set of object files being
linked for this program) to be read in. The subprogram call tree
is analyzed to compute stack requirements for the main program and
each dependent task.

NOTE: The tree will be incomplete if any required compilation
unit's CTI files are missing.

SYNTAX ONLY
NOSYNfAx ONLY - default

This switch performs syntax and semantic checking on the source
program. No object file is produced and the MACRO switch is
ignored. The Ada Program Library is not updated.

TARGET-1750A -- default
TARGET-VAX -- default

This switch selects the target computer for which code is to be
generated for this compilation. "1750A" selects the MIL-STD-1750A
Instruction Set Architecture, Notice A. 'VAX" selects the VAX
architecture operation under VMS.

TrLO Ews-r6A~s L=D



TLD ADA COMPILER 1750A-ADA-2
COMPILER USAGE 3 - 18

WARNINGS -- default
NOWARNINGS

The WARNINGS switch outputs warning and higher-level diagnostic
messages.

The NOWARNINGS switch suppresses the output of both warning-level
and information-level diagnostic messages.

WIDTH-n
WIDTH-l10 -- default

This switch sets the number of characters per line (80 to 132) in
the listing file.

WRITE EL•B
NOWRfiTE ELAB -- default

The WRITEELA.B switch is used to obtain an Ada source file which
represents the main elaboration "setup" program created by the
compiler. The MAINELAB switch may not be used at the same time as
the ELAB switch.

XTRA
NOXmA -- default

This switch is used to access features under development. See the
description of this switch in Section 3.9.

-rLD Z'r57E6A4. L7D



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 1

4. DIRECTIVE LANGUAGE

TLDlnk is called by a command which may specify options in a form which
is host dependent. See Chapter 5 for a description of the command line
on a specific host computer. On each host, one of the options is to
specify a linker directive file which is host independent. This
section describes the directives which may appear in a linker directive
file to control a link operation.

4.1 DIRECTIVE FILE

Each line of the Directive File contains up to 132 characters. Tabs
are treated as blanks. Blanks are necessary to separate words when no
other punctuation would otherwise separate them, but the number of
blanks used is insignificant. Any characters after two successive
minuses (--) are ignored. A directive ordinarily consists of one line
of input, but an opening parenthesis, "(" or "<", which is unmatched on
one line causes all following lines to be included in the same
directive until the closing parenthesis, ")" or 0>", is found,
permitting long parenthesized lists. Words may not be divided between
lines. Only one directive is allowed per input line. Either upper or
lower case may be used; upper and lower case are equivalent. In the
following list of directives and components (e.g., directive
attributes), the acceptable abbreviation for a directive is in bold and
may be used instead of the entire directive or component name. For
example, the CSECT directive attribute WRITEPROTECT may be entered as

4.2 DIRECTIVES

TLDlnk directives are individually described in this section and appear
in alphabetical order. For discussions of related directives, refer to
Sections 3.2 -3.8, in Chapter 3.

In the following descriptions, upper case Roman font is used for
keywords and lower case italics indicates information provided by the
user, e.g., ADDRESS STATES decimal.

Characters inside curley ( ) braces are optional, the user may enter or
omit them. Rectangular braces with a vertical bar inside represent a
choice; [XIY] indicates that the user may enter X or Y, but not both.

TLD 5ZrEtA4S LTV



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DiRECTIVE LANGUAGE 4 - 2

The - symbol is used for a convenient line break. It is nor part of
the syntax.

In these descriptions, directive switches are shown with "*" as the
lead-in charactex. For VAX or MV hosted systems, the user should
replace "*" with "/". For UNIX hosted systems, "*" should be replaced
with "-". For example, the **TRANSIT" switch (in the NODE description)
is entered as */TRANSIT" for VAX systems, or "-TRANSIT' for UNIX
systems.

The following words, in lower case italics, are used in the
descriptions:

file

This is a host file specification. A file specification must be
completely contained on a line.

node

This is the name of a node in the program being linked.

module

This is the name of a module in the program being linked.

symbol

This is the name of an external symbol in the program being
linked.

laddress

This is a logical address, in the form (a.}n[I1O]. In the
address, a is a hexadecimal digit giving the address state
(default 0), n is a hexadecimal number from 0 to FFFF giving the
address within the address state, and I or 0 (upper or lower
case) specifies instruction or operand.

paddress

This is a physical address in the form of a hexadecimal number
from 0 to FFFFF.

address

This is a logical or physical address.

_TLO S-ISTrEIS LT7



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 3

ipage

This is a logical page number in the form (a.)nWIIO). In the
address, a is the address state (default 0), n is a hexadecimal
number from 0 to F giving the page number within the address
state, and I or 0 indicates instruction or operand.

ppage

This is a physical page number in the form of a hexadecimal
number from 0 to FF.

decimal

This is a decimal number.

Each TLDInk directive is described below.

ADDRESS STATES decimal

This directive declares the number of page registers which
the program being linked is expected to use. If the number
is 0, TLDlnk assumes that there are no page registers, and
memory mapping is not supported.

If this directive is absent, TLDink assumes that the program
being linked uses 16 Address States.

ASSIGN lpage,ppage{(,number-pages)

The ASSIGN directive causes TLDInk to assign the specified
logical page(s) to the specified physical page(s). The
assignment begins at Ipage and ppage and continues with
consecutive logical and physical pages until number-pages
have been assigned. If number-pages is omitted, the default
is I page. The ASSIGN directive is required for all physical
pages specified in ROM directives if ADDRESS STATES is
greater than zeto.

CINCLUDE file((module((csecc .... ))(-symbol,.... .... )-symbol ...

CINCLUDE, the conditional INCLUDE directive, is no longer
supported. Use the INCLUDE directive instead.



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 4

COLLECT NODE - node name (,[ATTR-actrirurejNAKE-csecr name])

The COLLECT NODE directive collects control sections by
attribute or name and moves them to the splecified node. The
control sections collected are those between the last NODE
directive and the COLLECT directive which have the specified
attribute or control section name.

COMMENT -"Text to be put in Load 1lodule"

The COMMENT directive contains text which TLDInk puts in the
load module. TLDlnk precedes the text within qu.tes by "/;;"
to distinguish user inserted comments from those iie.-ted by
TLDlnk (which begin with "/;"). All comments specified by
COMMENT directives are inserted in the load module
immediately following the initial comment which is created by
TLDlnk.

CONTINUATION

The CONTINUATION directive indicates that the character
following the directive is a continuation line mark for the
current directive file and all nested directive files. A
continuation line mark is used when more information is
needed to complete the current line.

The default continuation marks are operating system-specific:
the continuation line mark for computer systems r•n.ning on
UNIX is "\", for VAX/VMS it is "-", and the mark fc: AOS/VS
systems is "&." Continuation line mark characters are set
for a directive file when the CONTINUATION directive is
followed by the appropriate continuation character.

A continuation line mark must be preceded by a space. The
mark cannot cross file boundaries. Continuation line marks
only affect lines within the same directive file.

For example, a c~ntinuation line in UNIX might look like:

store 888- 1,2,3,4.5,6,",8,9,10,11,12,13,14, \

15,16,17

and is equivalent to:

store 888 - 1,2.3,4,5,6,7.8,9,10,11,12,13,14
store 896 - 15,16,17

A continuation line mark may also be used to place a comment,
for example:

B7• 3'TEA$5S LTD -- .-



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 5

store 888 - l,2,3,4,5,6,7,8,9,l0,\-- comment here
11,12,13

NOTE: If the continuation character "-" is to be used in
other contexts (e.g., using it on the VAX to exclude
symbols on an INCLUDE directive), then the CONTINUATION
directive must be used to change the default continuation
character.

CSECT module,csect( ,[address ALIGN-n]) (ATTR-artribute- list)

The CSECT directive specifies the address or alignment and/or
the attributes of a control section. The module and csect
name are required to identify the control section uniquely.
Either address or alignment, but not both, may be specified.
If address is specified, it is given as a single hexadecimal
number. TLDlnk interprets the address as physical if ADDRESS
STATES is 0; otherwise, TLDIlnk interprets the address as an
instruction address or operand address according to the
control section attribute. The attributes are identified
below. In this list, the characters in bold must be entered,
the remaining plain text characters are optional. Italics
indicates information provided by the user.

WRITEPROTECT Allocate this control section to a page
covered by a page register with the
write protect bit on.

NOTWRITEPROTECT Allocate this control section to a page
covered by a page register with the
write protect bit off.

BLOCKPROTECT Allocate this control section to a
1024-word block protected from
processor access by a bit in
memory-protect RAM.

NOTBLOCKPROTECT Allocate this control section to a
1024-word block with processor access
allowed by a bit in memory-protect
RAM.

DMAPROTECT Allocate this control section to a
1024-word block protected from DMA
access by a bit in memory-protect RAM.

T•Jra SwVST4I LTD



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 6

NOTDMAPROTECT Allocate this control section to a
1024-word block with DMA access
allowed by a bit in memory-protect
RAM.

STARTROM Allocate this control section to a page
designated as startup ROM by a ROM
linker directive.

RAM.ORRom Allocate this control section to a page
designated as RAM-OR ROM by a ROM
linker directive, or if there is no
such linker directive or not enough
room in the ROM, allocate this control
section to RAM.

ROMoNLY Allocate this control section to a page
designated as ROM-ONLY by a ROM linker
directive.

RAMONLY Allocate this control section to a page
not designated as ROM by a linker
directive.

DEBUG

DEBUG causes the linker to create a file containing symbols
and their values for use by the symbolic debugger. The
linker puts all external symbols in the symbol file and any
local symbols which were included in the Relocatable Object
File by the compiler or assembler. If no file-spec is
specified, the name of the symbol file is derived as
described in the MAP switch. If DEBUG is not specified, the
linker does not produce the symbol file.

DEBUG causes a TLD Symbol File (.sym) to be generated when
LDMTYPE - LDM or LLM is specified. DEBUG causes the HP
Linker Symbol Files (.L) and an Assembler Symbol File (.A) to
be generated whehever LDMTYPE-HP is specified.

END

This directive is always required. In a file specified in a
USE directive it terminates directive input from that file.
In the primary directive file, it terminates directive i,.,ut
to TLDlnk, so that any subsequent input is ignored. After
this directive is read, TLDInk allocates memory and reads the
object files to produce the load module.

-T-sws-reAs LiD



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 7

ENTRY MODULE (-)symbol,...

The option to have TLDlnk produce an entry module file is
specified in the command line. See Chapter 5 for a
description of the command line options.

If the option to produce an entry module file is specified in
the command line, then an ENTRY MODULE directive may be used
in the directive file to restrict the entry points which are
defined in the entry module file. If the ENTRY MODULE
directive does not appear, all external symbols defined in
the link are defined in the entry module file. If the ENTRY
MODULE directive is used, it must precede any NODE
directive.

The symbols listed inside angle brackets in this directive
are all preceded by a minus sign, or are all not preceded by
a minus sign. If the symbols are not preceded by a minus
sign, then only the symbols given are defined in the object
module. If the symbols are preceded by a minus sign, then
all the entry points in the node except the symbols given are
defined in the object module.

EXCLUDE file ((module,.... ))

EXCLUDE, a directive which includes a file while excluding
selected modules, is no longer supported. Use the INCLUDE
directive instead.

TLD S-rEMS LTD



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DiRECTIVE LANGUAGE 4- 8

INCLUDE(*COND) [file( (module symbollist)) I file( (module_lis:) I-

(<symbol list>)]

modulesymbol list ::-

module ((csec_-list))(<symbollisc>)(,module((csecrlist))-
(<symbollist>))

modulelist ::-

module [((csectlis:)}{,module((csecr list)))... -

I module(,-module)]

csece list ::- csecr(,csect.... I -csecr(,-csect...)

symbol-lise ::- symbol(,symbol...) I -symbol(,-symbol...)

BNF notation is used above to express the complicated syntax
of the INCLUDE directive.

This directive causes the specified file to be included in
the load module. If any module names are listed in
parentheses, all the names must be prefixed with minus signs
or none of them may have minus signs. If the module names
are preceded by a minus sign, then those object modules are
excluded from the load module. If the module names are not
preceded by a minus sign, then only the named modules are
included in the load module. In either case, the order of
the module names is not significant. If no modules are
listed in parentheses, then the entire file is included.

If module names are listed without minus signs, each module
name may be followed by individual control section names in
parentheses following the module name. If any control
sections are listed, all the control sections must be
prefixed by minus signs or none of them may have minus
signs. If control section names are preceded by minus signs,
those control sections are excluded from the link. If
control section names are not preceded by minus signs, only
the named control sections are included in the link. If no
list of control section names follows a module name, the
entire module is included in the link.

If module names are not listed, or if module names are listed
without minus signs, individual external symbol definitions
may be included or excluded from individual modules or from
the entire file by listing the symbol names, optionally
prefixed with minus signs, and enclosed in angle brackets (<
>). If a sy-bol list follows a module name (and its optional
list of control section names), the specified symbols are

7D L SS-rTeAA5 1-71



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 9

included or excluded from the module. If a symbol list
follows the file name (and the optional list of module
names), the specified symbols are included or excluded from
the entire file. Symbols may be excluded or included in a
directive line, but not both. If the *COND qualifier is
used, then the specified modules are included in the load
module only if they have not already been included.

INDIRECT (*ADDRESS - address)(*ROMADDRESS - address ) symbol,...

The INDIRECT directive specifies symbols that are accessed
indirectly, through a branch vector. In this vector, symbols
are ordered the same way that they are in the symbol list.
The ADDRESS qualifier provides the starting address of the
transfer vector. This must be a physical address. The
ROMADDRESS qualifier specifies the starting address of a copy
of the transfer vector in ROM.

A symbol may only appear once in an INDIRECT symbol list.
However, multiple definitions of these are permitted in the
object code to permit replacement of procedures. When
multiple definitions are used, the transfer vector contains a
branch to the last procedure encountered, and no diagnostic
is issued.

For more information, see the discussion of "Reprogramming"
in Section 3.2.8 of this manual.

LDMTYPE-formart ,format...4
LDMTYPE-LDM -- default
LDMTYPE-LLM
LDMTYPE-HP

LDMTYPE specifies the format of the load module and symbol
file(s) TLDlnk is to produce. Three formats are currently
available. If more than one format is specified, the members
of the list are separated by commas. See DEBUG for related
information.

o LDM (file extension .LDM), the default, specifies the TLD
Load Module Format.

o LLM (file extension .LLM) specifies a format that is
similar to the TLD Load Module Format, but with logical
addresses instead of physical addresses. See Section
3.10.

o HP (file extension .X) specifies the Hewlett-Packard
HP64000 Absolute File format.

.1'r~ zwemIs LTo



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 10

LET (*MEMORYTYPE - "memory type name") symbol - value

The LET directive causes the linker to set the specified
symbol to the specified value. The effect is as if tte
symbol had been defined as an EXPORT in an object module.
Any external reference to the specified symbol from an object
module will be set to the value specified in the LET
directive. Optionally, a symbol type can be declared as a
specific memory type if MEMORY TYPE is set - *memory type
name."

MAXADR address

This directive gives the maximum physical address the program
is expected to use. If the directive is not used, it is
assumed that all 0..FFFF (hexadecimal) locations are
available, except those reserved by the RESERVE directive.
If the linked program extends beyond the specified address,
it is linked with a warning.

MEMORY BLOCK PROTECT

This directive announces that the block protect RAM is
available on the target processor, permitting hardware memory
protection in increments of 1024 words. If this directive is
present, values for loading in memory-protect RAM are
included in the load module. If this directive is absent,
TLDlnk assumes that there is no block protect RAM.

NODE (*NO) TRANSIT (-Trans! rName) ( *STARTROM)
(*ADDRESS-address I *ALIGN-address) node( ,node)

The NODE directive declares that all control sections
included up to the next NODE or END directive are contained
in the same node. All control sections in a node are visible
at the same time.

The TRANSIT switch is used to specify transit routine
options. The default is TRANSIT. If NOTRANSIT is used, the
insertion of transit routines is suppressed for calls
originating from another node to entry points within this
node. If TransitName is used, the named transit routine is
inserted for all calls originating from another node to entry
points within this node.

The STARTROM switch indicates that the contents of this node
are to be placed in startup ROM. This switch inserts a /V
STARTROM record before the contents of this node in the load
module.

7I D 3uSWETEMS LCr



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 11

The ADDRESS or ALIGN switch, but not both, may be used to
specify the start address or the alignment of the first
module in the node. If ADDRESS STATES is greater than 0,
then the address may be an instruction address, or an operand
address, or both.

The first node name is the name of this node. It can
duplicate the name of any symbol, file, or module, or it can
be a new name. The second node name is the name of the
parent of this node. When there is no parent (i.e., for a
root node) the second node name is omitted. The same name
must not be used as the node name in two NODE directives.
The parent node must precede its descendant nodes. NODE
directives must be ordered such that no node is separated
from its parent node by only its sibling nodes and their
descendant nodes.

NOLOAD address, address

The NOLOAD directive causes code or data within the specified
range to be omitted from the load module. This directive may
occur repeatedly to specify multiple ranges. If ADDRESS
STATES is 0, the addresses must be physical. If ADDRESS
STATES is greater than 0, the addresses may be logical or
physical.

NOTE: NOLOAD may be used to suppress generation of code or
data that is already in ROM but is referenced by new and or
replacement code.

RESERVE address,address

This directive announces that no relocatable control sections
are to be loaded into the specified range of addresses.
Absolute control sections are loaded without regard to
reserved areas. Addresses beyond the MAXADR address are
treated as reserved. This directive may occur repeatedly for
multiple reserved ranges.

If ADDRESS STATES is 0, then the addresses must be physical
addresses. If ADDRESS STATES is greater than 0, then the
addresses may be logical addresses or physical addresses, but
all RESERVES with physical addresses must precede the first
NODE directive.

._____L_7 zjjm'EA4S LT-D



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 12

ROM(switch list) paddresspaddress

This directive restricts the given range of physical
addresses to control sections designated as read-only
memory. All other memory is treated as readable and
writeable. This directive may occur repeatedly for separate
ROM ranges. If ADDRESS STATES is greater than 0, the ASSIGN
directive must specify the logical pages which are to be
assigned to all ROM physical pages.

The following list identifies switches that are used to
specify attributes of control sections which are allocated to
ROM. The attributes of 0/I and RAM/RON are checked for all
relocatable control sections. The 0/I attribute can have two
values: Operand or Instruction. The RAM/ROM attribute can
have three values: RAM-ONLY, ROM-ONLY, or RAMORROM.

*S Restricts this ROM range to control sections with
attribute STARTROM.

*IR Restricts this ROM range to control sections with
attributes Instruction and ROM-ONLY.

*IRR Restricts this ROM range to control sections with
attributes Instruction and RAMORROM.

*OR Restricts this ROM range to control sections wit l

attributes Operand and ROMNONLY.

*ORR Restricts this ROM range to control sections with
attributes Operand and RAMORROM.

Switches can be combined and the combined attributes will be
selected. In addition, the following are switches that
specify combinations of attributes:

7r 5D TEN LTD



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 13

*1 Has the same effect as *IR*IRR. Restricts this ROM
range to control sections with attributes Instruction
and ROM-ONLY or RAM ORROM.

*0 Has the same effect as *OR*ORR. Restricts this ROM
range to control sections with attributes Operand and
ROM ONLY or RAM OR ROM.

• R Has the same effect as *IR*OR. Restricts this ROM
range to control sections with attribute ROM ONLY
regardless of the 0/1 attribute value.

*RR Has the same effect as *IRR*ORR. Restricts this ROM
range to control sections with attribute RAMNOR ROM
regardless of the 0/I attribute value.

If no switches are specified, control sections with
attributes ROMNONLY or RAM orROM are allocated to ROM.

SEARCH(*REPEAT) {*NODE-NodeName I file

This directive causes TLDlnk to search the specified file for
modules which define currently undefined external
references. Any such modules are included just as if they
had been specified in an INCLUDE directive. Undefined weak
external references do not cause inclusion on a search, but
if an external is both weakly and strongly referenced, its
defining module is loaded by SEARCH. New external references
from modules included from the search file can cause
additional modules to be included from the search file,
regardless of the order of modules in the search file. For
example, if the program references only S, and 3 references
T, and the library contains T followed by S, then both S and
T are included from the library.

The REPEAT switch has two effects. First, it causes TLDlnk
to search the file when the END directive is encountered
instead of when the SEARCH directive is encountered. Second,
the set of files which appear in SEARCH*REPEAT directives is
searched repeatedly to try to define new undefined external
references from any module included from any file in the
set. The REPEAT switch allows the use of multiple libraries
which have interlibrary references.

The NODE switch causes TLDlnk to insert any modules included
as a result of the search in the specified node. If the NODE
switch is not used, the modules are inserted in the node in
which the SEARCH occurs, or if the REPEAT switch is used, in
the last node of the link.

-TLD SWETUME LTD



TLD EXTENDED MEMORY LINKER 1750A-LNK-3A
DIRECTIVE LANGUAGE 4 - 14

STORE [symbol I address] - [symbol I value I SUM](...).1

The STORE directive indicates that TLDlnk is to cause one or
more values to be stored in memory when the program being
linked is loaded. The starting location at which values are
to be stored is specified either as an address or an external
symbol. If ADDRESS STATES is 0, then the address must be a
physical address. If ADDRESS STATES is greater than 0, then
the address may be a logical address or a physical address.
Each value to be stored is specified as a hexadecimal number,
or as an external symbol, or as the SUM function described
below. TLDlnk causes the first value to be stored in the
specified address when the program is loaded into memory. If
more than one value is given, the succeeding values are
stored in consecutive addresses following the specified
address. Without a warning, the values stored in memory by
the STORE directive overwrite any other values stored at the
same locations.

SUM (scartadr, endadr, result, skipadr)

The purpose of the SUM function is to return a checksum
value. The SUM function returns a value equal to result
minus the sum of all words from starradr to endadr with the
exception of the word at skipadr. Any overflows are ignored
in taking the sum. The SUM function is intended to be used
with the STORE directive to compute a value to be stored at
skipadr. This is computed the following way:

SUM: - result - sum (endadr - starradr) (skipadr)

If ADDRESS STATES is 0, then all the addresses used in the
SUM function must be physical addresses. If ADDRESS STATES
is greater than 0, the addresses may be logical or physical
addresses.

USE file

This directive -causes TLDInk to read directives from the
specified file until it encounters an END directive. Upon
encountering the END directive in the specified file, TLDlnk
returns to the directive following the USE directive.

TLD SWSTEME5 LTD



APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -1.0*2.0**127 .. 0.999999*2.0**127;

type DURATION is delta 2.0**(-14) range -86400.0 .. 86400.0;

type LONG INTEGER is range -2147483648 .. 2147483647;

type LONG FLOAT is digits 9
range -1.0*2.0**127 .. 0.999999999*2.0**127;

end STANDARD;

C-I



APPENDIX F OF THE Ada STANDARD

In the customer's Appendix F documentation that constitutes this appendix,
some information appears to be inaccurate or incomplete; the AVF offered
the customer an opportunity to redress these points, but the customer
declined to do so.

The customer declined to provide the AVF with an updated list of all
compiler/linker options and the options used specifically for this
validation.

On page C-7, the customer states that the subtype priority is integer
range 1 .. 16#3EFF#. However the correct range is 1 .. 64.

On page C-8, the customer states that address clauses for task entries
(interrupts) are not supported. However, test B91001H contains such
an address clause, and this test was passed. Also, in a petition
against this test for a Data General implementation, which does not
support such address clauses, the customer asserts that all of the
1750A implementations do support them.

On page C-10, the customer states that the range of priority is 0 to
16366. The correct range is 1 to 64.

On page C-If, the customer states that access objects are implemented
as 16-bit integers. However, for tests CD2A81A et al. (See section
2.3), the AVF was requested to increase by 32 bits the size used for
access objects whose designated objects are strings.

On page C-12, the customer states that the pragma priority is
supported with values of 1 to 16366. The correct range is 1 to 64.

C-2



APPENDIX F OF THE Ada STNDANTD

The Ada language definition allows for certain machine dependencies in a
controlled manner. No machine-dependent syntax of semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in chapter 13 of the
MIL-STD-1815A; and certain allowed restrictions on representation clauses.

The full definition of the imvolementation-dependent characteristics of the
TLD Sun-4/MIL-STD-1750A Ada Compiler System is presented in this
Appendix F.

Implementation-Dependent Pragmas

The TLD ACS supports the following implementation dependent pragmas.

Pragma Collect (type name, attribute);

This pragma tells the compiler to collect all objects of specified
typename and subtypes of type name into unmapped control sections. An
"unmappea control section" is allocated a physical memory location not
covered by a page register. Unmapped control sections are accessed from a
device by DMA or by IBM GVSC extended instructions.

Pragma Control-Section (USECT, UNNMAPPED, object name 1, object-name...} );

This pragma specifies data objects that will be put into unmapped control
sections. The first two parameters must be USECT and UNMAPPED and the
remaining parameters are the names of Ada objects. An "unmapped control
section" iF. allocated a physical memory location not covered by a page
register. Unmapped control sections are accessed from a device by DMA or
by IBM GVSC extended instructions.

Pragma C.rntiguous (type name);
Pragma Contiguous 'ubject_name);

This pragma is used as a query to determine whether the compiler has
allocated the specified type of object in a contiguous block of memory
words. The compiler will generate a warning message if the allocation is
noncontiguous or is undetermined. The allocation probably will be
noncontiguous when data structures have dynamically sized components. The
allocation probably will be undetermined when unresolved private types are
forward type declarations. This pragma provides information to the
programmer about the allocation scheme used by the compiler.

C-3



APPENDIX F OF THE Ada STANDARD

Pragma Export (Languagename, Ada_entity_name, (String));

This pragma is a complement to Pragma Interface and instructs the compiler
to make the entity named available for reference by a foreign language
module. The language name identifies the language in which the foreign
module is coded. The only foreign language presently supported is
Assembly. Ada and JOVIAL are permitted and presently mean the same as
Assembly but the semantics of their use are subject to redefinition by
future releases of the compiler. If the optional third parameter is
present, the string provides the name by which the entity may be referenced
by the foreign module. The contents of this string must conform to the
conventions for the indicated foreign language and the linker being used.
No check is made by the compiler to insure that these conventions are
obeyed.

Only objects having static allocation and subprograms are supported by
pragma Export. If the Ada entity named is a subprogram, this pragma must
be placed within the declarative region of the named subprogram. If the
name is that of an object, the pragma must be placed within the same
declarative region and following the object declaration. It is the
responsibility of the programmer to insure that the subprogram and object
are elaborated before the reference is made.

pragma If (Compile Time Expression);
pragma Elsif (Compile_TimeExpression);
pragma Else;
pragma Endif;

These Source directives may be used to enclose conditionally compiled
source to enhance program portability and configuration adaptation. These
directives may occur at the place that language defined pragmas,
statements, or declarations may occur. Source code following these pragmas
will be compiled or ignored similar to the semantics of the corresponding
Ada statements depending upon whether the Compile TimeExpression is true
or false, respectively. The primary difference between these pragmas and
the corresponding Ada Statements are that the pragmas may enclose
declarations and other pragmas.

Pragma InterruptKind (Entry_Name, EntryType {, Duration )

This pragma must appear in the task specification and must appear after the
Entry Name is declared. Allowed Entry Type are Ordinary, Timed, and
Condifional. The optional parameter Duration is applicable only to timed
entries and is the time to wait for an accept.

For an Ordinary entry, if the accept is not ready, the task is queried.

C-4



APPENDIX F OF THE Ada STANDARD

For a Timed entry, if the accept is not ready, the program waits for the
period of time specified by the Duration. If the accept does not become
ready in that period, the interrupt is ignored.

For a Conditional entry, if the accept is not ready, the interrupt is
ignored.

Pragma Load (literal string);

This pragma makes the compiler include a foreign object (identified by the
literal-string) into the link command.

Pragina Monitor;

Pragma Monitor can eliminate tasking context overhead. The pragzna
identifies Ada tasks that obey certain restrictions (listed below),
allowing efficient invocation by the compiler. With Pragma Monitor, a
simple procedure call is used to invoke task entry.

The pragma only applies to tasks that have the following restrictions:

"o Monitor tasks must only be declared in library level non-generic
packages

"o Monitor tasks may contain data declarations only within the accept
statement.

"o A monitor task consists of an infinite loop containing one select
statement.

"o The "when condition" is not allowed in the select alternative of the
select statement.

"o The only selective wait alternative allowed in the select statement is
the accept alternative.

"o All executable statements of a monitor task must occur within an
accept statement.

"o Only one accept statement is allowed for each entry declared in the
task specification.-

If a task body violates reetrictions placed on monitor tasks, it is
identified as erroneous and the compilation fails.

Pragma No-Default Initialization;
Pragma NoDefault Initialization (typename, [I, typename .. . )I

C- 5



APPENDIX F OF THE Ada STANDARD

The LRM requires initialization if certain data structures even though no
explicit initialization is coded. For example, the LRM requires
access type objects to have an initial value of "NULL." The
NoDefault_Initialization pragma would prevent this default initialization.

In addition, initialization declared in a type statement is suppressed by
this pragma.

The TLD implementation of packed records or records with representation
clauses includes default initialization of filLer bits, i.e., bits within
the allocated size of a variant that arc not associated with a record
component for the variant. NoDefaultInitialization prevents this default
initialization.

No Default Initialization must be placed in the declaration region of the
package, Before any declaration that require elaboration code. The pragma
remains in effect until the end of the compilation unit.

Pragma NoElaboration;

Pragma No Elaboration is used to prevent the generation of elaboration code
for the containing scope. The pragma must be placed in the declaration
region of the affected scope before any declaration that would otherwise
produce elaboration code.

Pragma No Elaboration prevents otherwise unnecessary initialization of
packages that are initialized by other non-Ada operations. Examples are
ROM data and Read Time Kernel initialization. It is used to maintain the
TLD Run Time Library (TLDrtl) and is not intended for general use.

Pragma TCBExtension (value);

This Pragma is used to extend the size of the Task Control Block on the
stack. It can be used only within a task specification. The parameter
passed to this program must be static and represents the size to be
extended in bytes.

Pragma WithinPage (type name);
Pragma Within_Page (object_name);

This pragma instructs the compiler to allocate the specified object, or
each object of the specified type, as a contiguous block of memory words
that does not span any page boundaries (a page is 4096 words).

The compiler will generate a warning message if the allocation is
noncontiguous or not yet determined. Additionally, the compiler will
generate a warning message if the pragma is in a nonstatic declarative
region. If an object exceeds 4096 words, it will be allocated with an
address at the beginning of a page, but it will span one or more succeeding

C-6



APPENDIX F OF THE Ada STANDARD

page boundaries and a warning message will be produced.

Implementation-Dependent Attributes

TaskId

The Task Id attributes is used only with task objects. This TLD-defined
attributes returns the actual system address of the task object.

Specification of Package SYSTEM

Package SYSTEM

The following declarations are defined in package system:

type operatingsystem is ( unix, netos, vms, os-x, msdos, bare );

type name is (none, ns16000, vax, af1750, z8002, z8001, gould,
pdpll, m68000, pe3200, caps, amdahl, i8086, i80286, i80386,
z80000, ns32000, ibmsl, m68020, nebula, name x, hp);

system name: constant name := name'target;
os name: constant operating_system := operatingsystem'system;

subtype priority is integer range I..16#3EFF#; - 1 is default priority.
subtype interrupt_priority is integer range 16#3FFO#..16#3FFF#;

pragma put-line ('>', '>', '>', ' , system name,
I F I'/o, s ', OS name, ', '<', '<', );

type address is range 0 .. 65535;
for address'size use 16;

type unsigned is range 0 .. 65535;
for unsigned'size use 16;

type long_address is range 0..16#007FFFFF#; - 23 bit physical address
- for GVSC

-Language Defined Constants

storage-unit: constant :- 16;
memory_size: constant := 65536;
min int: constant :- -2**31;
max-int: constant :- 2**31-3;
max digits: constant :- 9;
max mantissa: constant :- 31;
fine delta: constant :- 2.0**(-31);
tick: constant := 1.0/10 000.0; - Clock ticks - 100 msecs.
rtc tps: constant :- 10_0007
min-delay: constant :- rtctps * tick; - Minimum value of ADA delay

C-7



APPENDIX F OF THE Ada STANDARD

address 0: constant address :- 0; - Zero address

Restrictions on Representation Clauses

Enumeration representation clauses are supported for value ranges of
Integer'First to Integer'Last.

Record representation clauses are supported to arrange record components
within a record. Record components may not be specified to cross a word
boundary unless they are arranged to encompass two or more whole words. A
record component of type record that has itself been "rep specificationed"
may only be allocated at bit 0. Bits are numbered from left to right with
bit 0 indicating the sign bit.

The alignment clause is not supported.

Address clauses are supported for variable objects and designate the
virtual address of the object. The TLD Ada Compiler System treats the
address specification as a means to access objects allocated by other than
Ada means and accordingly does not treat the clause as a request to
allocate the object at the indicated address.

Address clauses are not supported for constant objects, packages, tasks, or
task entries.

Implementation-Dependent Names

The TLD Ada Compiler System defines no implementation dependent names for
compiler generated components.

Interpretations of Expressions in Address Clauses

Address expression values and type Address represent a location in logical
memory (in the program's current address state). For objects, the address
specifies a location within the 64K word logical operand space. The
'Address attribute applied to a subprogram represents a 16 bit word address
within the logical instruction space.

Restrictions on Unchecked Conversion

Conversion of dynamically sized objects are not allowed.

I/O Package Characteristics

C-8



APPENDIX F OF THE Ada STANDARD

The following implementation-defined types are declared in Text Io.

subtype Count is integer range 0 .. 511;

subtype Field is Integer range 0 .. 127;

Package Standard

The implementation-defined types of package Standard are:

type Integer is range -32 768 .. 32 767;
type Long-Integer is range -2 147 483 64- .. 2 147 483 647;
type Float is digits 6 range -1i0*2 0**127 .. 0.•999•9*2Y0**127;
type Long Float is digits 9 range -1.0*2.0**127 .. 0.999999999*2.0**127;
type Duration is delta 2.0**(-14) range -86 400.0 .. 86_400.0;

Other System Dependencies

LRM Chapter 1.

None.

LRM Chapter 2.

Maximum source line length - 120 characters.

Source line terminator - Determined by the Editor used.

Maximum name length - 120 chaLacters.

External representation of name characters.

Maximum String literal - 120 characters.

LRM Chapter 3.

LRM defined pragmas are recognized and processed as follows:

Controlled - Has no effect.

Elaborate - As described.in the LRM.

Inline -- Not presently supported.

Interface - Supported as a means of importing foreign language
components into the Ada Program Library. May be applied either to a
subprogram declaration as being specially implemented, - read
Interface as Import -, or to an object that has been declared
elsewhere. Interface languages supported are System for producing a
call obeying the standard calling conventions except that the BEX
instruction is used to cause a software interrupt into the kernel

C-9



APPENDIX F OF THE Ada STANDARD

supervisor mode; Assembly for calling assembly language routines; and
Mil-Std-1750A for defining built in instruction procedures. An
optional third parameter is used to define a name other than the name
of the Ada subprogram for interfacing with the linker.

List -- As defined in the LRM.

Memory Size -- Has no effect.

Optimize -- Has no effect. Optimization controlled by compilerComma'ndoption.

Pack -- Has no effect.

Page -- As defined in the LRM.

Prioritty -- As defined in the LRM. Priority may range from 0 to
16366. Default priority is 1.

Shared -- As defined in the LRM. May be applied to scalar objects
only.

Storage Unit - Has no effect.

Suppress -- As defined in the LRM for suppressing checks; all standard
checks may be suppressed individually as well as "Exception Info" and
"All Checks". Suppression of Exception Info eliminates da-ta used to
provTde symbolic debug information in the event of an unhandled
exception. The All Checks selection eliminates all checks with a
single pragma. In addition to the pragma, the compiler permits
control of check suppression by conmmand line option without the
necessity of source changes.

System Name - Has no effect.

Number declarations are not assigned addresses and their names are not
permitted as a prefix to the 'address attribute. (Clarification only).

Objects are allocated by the compiler to occupy one or more 16 bit 1750A
words. Only in the presence record representation clauses are objects
allocated to less than a word.

Except for access objects, uninitialized objects contain an undefined
value. An attempt to reference the value of an uninitialized object is not
detected.

The maximum number of enumeration literals of all types is limited only by
available symbol table space.

The predefined integer types are:

Integer range -32_768 .. 32_767 and is implemented as a 1750A single

C-10



APPENDIX F OF THE Ada STANDARD

precision fixed point data.
Long-Integer range -2 147 483 648 .. 2_147_483_647 and implemented
as 1750A double preciiion-datýa.
ShortInteger is not supported.
System.Min Int is -2 147 483 648.
System.MaxInt is 2_147__A83_647.

The predefined real types are:

Float digits 6.
LongFloat digits 15.
Short Float is not presently supported.
System.Max Digits is presently 9 and is implemented as 1750A 48-bit
floating point data.

Fixed point is implemented as 1750A single and double precision data as is
appropriate for the range and delta.

On the 1750A, index constraints as well as other address values such as
access types are limited to an unsigned range of 0 .. 65_536 or a signed
range of -32_768 .. 32_767.

The maximum array size is limited to the size of virtual memory -- 64K
words.

The maximum String length is the same as for other arrays.

Access objects are implemented as an unsigned 16 bit 1750A integer. The
access literal Null is implemented as one word of zero on the 1750A.

There is no limit on the number of dimensions of an array type. Array
types are passed as parameters opposite unconstrained formal parameters
using a 3 word dope vector illustrated below:

Word address of first element I
Low bound value of first dimension I
Upper bound value of first dimension I

Additional dimension bounds -follow immediately for arrays with more than
one dimension.

LRM Chapter 4.

MachineOverflows is True for the 1750A.

Pragma Controlled has no effect for the TLD VAX/1750A Compiler since
garbage collection is never performed.

C-11



APPENDIX F OF THE Ada STANDARD

4.

LRM Chapter 5.

The maximum number of statements in an Ada source program is undefined and
limited only by the Symbol Table space.

Case statements unless they are quite sparse, are allowed as indexed jump
vectors and are, therefore, quite fast.

Loop statements with a for implementation scheme are implemented most
efficiently on the 1750A if the range is in reverse and down to zero.

Data declared in block statements on the 1750A ii elaborated as part of its

containing scope.

LRM Chapter 6.

Arrays, records and task types are passed on the 1750A by reference.

Pragma Inline is not presently supported for subprograms.

LRM Chapter 7.

Package elaboration is performed dynamically permitting a warm restart
without the necessity to reload the program.

LRM Chapter 8.

LRM Chapter 9.

Task objects are implemented as access types pointing to a Task Information
Block (TIB).

Type Time in package Calendar is declared as a record containing two double
precision integer values: the date in days and the real time clock.

Pragma Priority is supported with a value of 1 to 16366.

Pragma Shared is supported for scalar objects.

LRM Chapter 10.

Multiple Ada Program Libraries are supported with each library containing
an optional ancester library. -The predefined packages are contained in the
TLD standard library, ADA.LIB.

LRM Chapter 11.

Exceptions are implemented by the TLD Ada Compiler System to take advantage
of the normal policy in embedded computer system design to reserve 50% of
the duty cycle. By executing a small number of instructions in the
prologue of a procedure or block containing an exception handler, a branch
may be taken, at the occurance of an exception, directly to'a handler

C-12



"APPENDIX F OF THE Ada STANDARD

rather than performing the time consuming code of unwinding procedure calls
and stack frames. The philosophy taken is that an exception signals an
exceptional condition, perhaps a serious one involving recovery or
reconfiguration, and that quick response in this situation is more
important and worth the small throughput tradeoff in a real time
environment.

LRM Chapter 12.

A single generic instance is generated for a generic body. Generic
specifications and bodies need not be compiled together nor need a body be
compiled prior to the compilation of an instantiatic-. Because of the
single expansion, this implementation of generics tend tu be more favorable
on the 1750A because of usual space savings achieved. To achieve this
tradeoff, the instantiations must by nature be more general and are,
therefore, somewhat less efficient timewise.

LRM Chapter 13.

Representation clause support and restrictions are defined above.

A comprehensive Machine Code package is provided and supported.

UncheckedDeallocation and UncheckedConversion are supported.

The implementation dependent attributes are all supported except
'StorageSize for an access type.

LRM Chapter 14.

Full file I/O operations are not supported for the 1750A. TextIo and
Low Level Io are supported.

C-13


